One of the greatest wishes of companies is end-to-end visibility in their operational and analytical workflows. Where does data come from? Where does it go? To whom am I giving access to? How can I track data quality issues? The capability to follow the data flow to answer these questions is called data lineage. This blog post explores market trends, efforts to provide an open standard with OpenLineage, and how data governance solutions from vendors such as IBM, Google, Confluent, and Collibra help fulfill the enterprise-wide data governance needs of most companies, including data streaming technologies such as Apache Kafka and Flink.
What Is Data Governance?
Data governance refers to the overall management of the availability, usability, integrity, and security of data used in an organization. It involves establishing processes, roles, policies, standards, and metrics to ensure that data is properly managed throughout its lifecycle. Data governance aims to ensure that data is accurate, consistent, secure, and compliant with regulatory requirements and organizational policies. It encompasses activities such as data quality management, data security, metadata management, and compliance with data-related regulations and standards.