Orion Brings Fully Homomorphic Encryption to Deep Learning for AI Privacy

 

As data privacy becomes an increasing concern, a new artificial intelligence (AI) encryption breakthrough could transform how sensitive information is handled. Researchers Austin Ebel, Karthik Garimella, and Assistant Professor Brandon Reagen have developed Orion, a framework that integrates fully homomorphic encryption (FHE) into deep learning. 

This advancement allows AI systems to analyze encrypted data without decrypting it, ensuring privacy throughout the process.

FHE has long been considered a major breakthrough in cryptography because it enables computations on encrypted information while keeping it secure. However, applying this method to deep learning has been challenging due to the heavy computational requirements and technical constraints. Orion addresses these challenges by automating the conversion of deep learning models into FHE-compatible formats. 

The researchers’ study, recently published on arXiv and set to be presented at the 2025 ACM International Conference on Architectural Support for Programming Languages and Operating Systems, highlights Orion’s ability to make privacy-focused AI more practical.

One of the biggest concerns in AI today is that machine learning models require direct access to user data, raising serious privacy risks. Orion eliminates this issue by allowing AI to function without exposing sensitive information. The framework is built to work with PyTorch, a widely used machine learning library, making it easier for developers to integrate FHE into exist

[…]
Content was cut in order to protect the source.Please visit the source for the rest of the article.

This article has been indexed from CySecurity News – Latest Information Security and Hacking Incidents

Read the original article: